Imagine a light planet revolving around a very massive star in a circular orbit of radius $R$ with a period of revolution $T$. If the gravitational force of attraction between the  planet and the star is proportional to $R^{-5/2}$, then,

  • A

    $T^2 \propto R^2$

  • B

    $T^2 \propto R^{7/2}$

  • C

    $T^2 \propto R^{3/2}$

  • D

    $T^2 \propto R^{3.75}$

Similar Questions

A body tied to a string of length $L$ is revolved in a vertical circle with minimum velocity, when the body reaches the upper most point the string breaks and the body moves under the influence of the gravitational field of earth along a parabolic path. The horizontal range $AC$ of the body will be

The radius of a planet is $R$. A satellite revolves around it in a circle of radius $r$ with angular velocity $\omega _0.$ The acceleration due to the gravity on planet’s surface is

The change in the value of $‘g’$ at a height $‘h’$ above the surface of the earth is the same as at a depth $‘d’$ below the surface of earth. When both $‘d’$ and $‘h’$ are much smaller than the radius of earth, then which one of the following is correct?

If potential energy of a body of mass $m$ on the surface of earth is taken as zero then its potential energy at height $h$ above the surface of earth is [ $R$ is radius of earth and $M$ is mass of earth]

Two planets move around the sun. The periodic times and the mean radii of the orbits are ${T_1},\,{T_2}$ and ${r_1},\,{r_2}$ respectively. The ratio ${T_1}/{T_2}$ is equal to